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First Order Conditions for Stochastic Problems:
Examples∗

1. Permanent income model with no-Ponzi condition

A Ponzi scheme is a business plan that involves borrowing and repaying the loans by
further borrowing rather than by profitably investing the borrowed funds. Of course
such a scheme has to come to an end, at which point someone loses a lot of money.
Rational lenders will not lend money to a Ponzi scheme, instead insisting that the
borrower behave in such a way as to be able to at least eventually repay his loans.
This condition is imposed in (4) below. It contrasts with the condition usually imposed
in mechanical linear-quadratic formalizations of this problem, in which instead the
requirement

β
1
2
tW (t)→ 0 (1)

is imposed. This is a more stringent limit on borrowing than the no-Ponzi condition,
and it at the same time imposes a limit on upward growth in W that makes no economic
sense as a constraint.
Objective function:

max
{C(t),W (t)(t)}∞t=0

E

[
∞∑
t=0

βtU (C (t))

]
(2)

Budget constraint:

W (t) = (1 + r(t− 1)) (W (t− 1)− C (t− 1)) + Y (t) . (3)

No-Ponzi Condition:

lim
t→∞

t−1∏
s=0

(1 + r(s))−1W (t) ≥ 0 . (4)

FOC’s:

∂C: U ′(C(t)) = β(1 + r(t))Et[λ(t+ 1)] (5)

∂W : λ(t) = β(1 + r(t))Et[λ(t+ 1)] (6)

Transversality:

lim sup
T→∞

βTE[U(T )′(Ĉ(T )− C̄(T ))− U(T )′ · (Ŵ (T )− W̄ (T ))] ≤ 0 (7)

for any feasible Ŵ sequence different from the optimal sequence W̄ .
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1.1. Solution for the quadratic utility, 1 + r ≡ β−1, i.i.d. Y (t) case. We assume
here the particular quadratic utility function U(C(t)) = C(t) − 1

2
C(t)2. In this case,

as we have seen in class, the two FOC’s (5) and (6) reduce to

C(t) = EtC(t+ 1) . (8)

The transversality condition (7) becomes

lim sup
T→∞

βT{(1− C̄(T )) · (Ĉ(T )− C̄(T )− Ŵ (T ) + W̄ (T ))} ≤ 0 . (9)

The conventional solution to this problem, satisfying (1), is found, as we have dis-
cussed in class, by solving the budget constraint forward, using (8) and the fact that,
because Y is assumed i.i.d., EtY (t+ s) = Ȳ for s ≥ 1. The result is

C(t) = (1− β)W (t) + βȲ , (10)

where Ȳ is the constant E[Y (t)]. Remember that to derive this we assumed that
E[βtW (t)] converged to zero. If we substitute (10) into the budget constraint (3), we
get

W (t) = W (t− 1) + Y (t)− Ȳ . (11)

Since Y is i.i.d., the variance of W (t) can be seen from (11) to grow linearly with t, so
(1) is satisfied, and thus a fortiori the no-Ponzi condition (4) is satisfied.

So we have a candidate solution to our problem with the no-Ponzi constraint. It sat-
isfies the Euler equation (8) by construction, and it satifies a conventional transversality
condition requiring that W not explode exponentially.

There are two ways to see that this is not a solution to the problem as posed. One is to
look at the correct transversality condition (9). Our objective function has a satiation
point at C(t) = 1, beyond which the marginal utility of consumption becomes negative.
It can be shown that for a random walk with i.i.d. increments (which is what (11) says
W is) the probability of crossing any particular fixed value infinitely often is one. In
other words, with probability one there will be infinitely many dates t at which we have
C(t) = (1−β)W (t) +βȲ > 1 + ε, where ε > 0 is some arbitrary fixed number. At any
given date t it is possible to decrease C(t) to the satiation level 1 and simultaneously
increase W (t) by the same amount. This only makes W (t) larger, and if future values
of consumption are left unchanged, the effect on W (t + s) for s > 0 is to make those
values larger.1 Thus deviating from our candidate optimal policy in this way will not
violate the no-Ponzi condition, which only restricts downward explosion, not upward
explosion, in W . But because the budget constraint is an unstable difference equation
in W , even a single deviation of this sort sets off exponential growth in W at the rate
β−1, making the second term in the transversality condition (9) have a positive lim inf
along the subsequence of t’s at which C(t) > 1 + ε.

While this result may help us understand the limits of the usual transversality con-
dition, it does not actually prove that the conventional non-explosive solution is not a

1Remember that we are constructing an alternative feasible path here, along which the budget
constraint (3), but not the optimal policy rule (10) will be satisfied
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solution to the model with the no-Ponzi constraint. That is because the Euler equa-
tions plus the no-Ponzi condition (plus convexity and concavity conditions) are only
sufficient conditions, not necessary conditions, for an optimum. But we can finish the
argument by comparing welfare on our deviant consumption path to welfare on the
non-explosive solution to the Euler equations. Our deviant path involves only raising
U(C(t)) by reducing C(t) to 1 whenever it exceeds that value. The only consequence
of this is to raise utility at some dates, while causing W to explode upward. The path
is feasible, and must have strictly higher utility than the nonexplosive solution. Thus
the non-explosive “solution” is not in fact an optimum.

So what would a true solution look like? Unfortunately, there is no analytic solution
available, no matter what simplifying assumptions we make on the distribution of Y .
We do know the following facts, however. The first order condition (5) implies that
C will be a martingale. It is clear that on an optimal path C(t) ≤ 1 at all times.
(Otherwise our strategy of reducing C to 1 at all dates when it exceeds 1 would again
be a feasible improvement on the path.) So C is a martingale bounded above by 1.
The martingale convergence theorem, which we have already cited in class, asserts that
bounded martingales converge with probability 1. So with probability 1 C converges
to something. If it does so, it is not hard to show that W must blow up exponentially,
and the only feasible direction for it to do this is upward, because of the no-Ponzi
condition. But then if the limiting value of C is less than one, it is possible to improve
on it by increasing C(t) at some date, and because this would only somewhat lower
an already upward-explosive path for W , it would be feasible. So the only limit C can
converge to on an optimal path is 1. Note that if Y is bounded below by zero, say,
then when W (t)(1− β) ≥ 1, it is possible to set C(s) = 1, all s ≥ t, without any risk
that W will ever become negative. (The budget constraint (3) implies that under these
conditions W is with probability one non-decreasing.) It is possible to use this fact to
show that on every optimal path there is some date T ∗ after which (i.e. for t > T ∗)
C(t) ≡ 1.

Summarizing, the true solution to this problem makes C(t) follow a martingale
process that eventually reaches the satiation level 1 and sticks there. On this solution
path, W eventually explodes upward at the rate β−t. This is in contrast to the non-
explosive solution to the Euler equations, along which C exceeds the satiation level
infinitely often.

1.2. Linearizing the general model. The linearized version of the Euler equations
(5)-(6) and the constraint (3) reads

U
′′
(C̄)dC(t) = β · (1 + r̄)Et[dλ(t+ 1)] + βλ̄dr(t) (12)

dλ(t) = β · (1 + r̄)Et[dλ(t+ 1)] + βλ̄dr(t) (13)

dW (t) = (1 + r̄)(dW (t− 1)− dC(t− 1)) + (W̄ − C̄)dr(t− 1) + dY (t) . (14)

In these linearized equations, a term of the form dZ(t) stands for Z(t)− Z̄, i.e. simply
the deviation between Z(t) and its value at the point we are linearizing around.
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Collecting these equations into matrix notation, we have0 0 β(1 + r̄)
0 0 β(1 + r̄)
0 1 0

dC(t)
dW (t)
dλ(t)

 =

 U
′′
(C̄) 0 0
0 0 1

−(1 + r̄) 1 + r̄ 0

dC(t− 1)
dW (t− 1)
dλ(t− 1)

+

1
1
0

 η(t) +

0 −βλ̄
0 −βλ̄
1 W̄ − C̄

[ dY (t)
dr(t− 1)

]
. (15)

Notice that, though there are two equations with dummy error terms, they both involve
the same expectational error, so there is only dummy disturbance η. Notice also that
the coefficient matrix on the left of the equality, which is playing the role of Γ0 in
the notes, is singular. To apply our Jordan-decomposition based methods, we have to
modify the system to get rid of the singularity (though gensys.m and matlab could
proceed with the system as it is). Usually the best way to do that is to eliminate
variables that can be solved for analytically. Here we use the fact that (5) and (6)
together imply λ(t) = U

′
(C(t)), so that dλ(t) = U

′′
(C̄)dC(t). This results, after

elimination of λ, in the reduced system[
U
′′
(C̄)β(1 + r̄) 0

0 1

] [
dC(t)
dW (t)

]
=[

U
′′
(C̄) 0

−(1 + r̄) (1 + r̄)

] [
dC(t− 1)
dW (t− 1)

]
+

[
1
0

]
η(t) +

[
−U ′

(C̄)β 0
W̄ − C̄ 1

] [
dr(t− 1)
dY (t)

]
. (16)

Using Γ0 to refer to the first square matrix on the left of the equation and Γ1 for the
first square matrix on the right, we can find

A = Γ−1
0 Γ1 =

[
β−1(1 + r̄)−1 0
−(1 + r̄) (1 + r̄)

]

=

 1 0
1

1− β−1(1 + r̄)−2
1

[β−1(1 + r̄)−1 0
0 (1 + r̄)

] 1 0
−1

1− β−1(1 + r̄)−2
1

 , (17)

where the expression on the right is the Jordan decomposition of A. Because a triangu-
lar matrix has its eigenvalues on the diagonal, we can see immediately from A, before
computing the Jordan decomposition, that it has one unstable root of 1 + r̄, and, if
β · (1 + r̄) > 1, one stable root of β−1(1 + r̄)−1. If U does not show satiation, then
the unstable root is unlikely to be consistent with optimization. By the usual “root-
counting” condition, then, we have one unstable root to correspond to our one dummy
error term η, and should most likely have existence and uniqueness. In a model with
a single unstable root like this, the criterion is that after multiplying the system by
P−1, the right-hand matrix in (17) (the matrix whose rows are the left-eigenvectors),
there should be a non-zero coefficient on η in the unstable equation in the transformed
system. It is easily verified that this condition is satisfied here.

What if β−1 · (1 + r̄)−1 ≥ 1 + r̄, so that there are two unstable roots as large as
the average interest rate? We can still “solve forward”, but we are likely to run into
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existence problems. In this case the whole system is unstable, so the condition for
existence is that the column of

P−1Π =

 1 0
−1

1− β−1(1 + r̄)−2
1

[1
0

]
=

 1
−1

1− β−1(1 + r̄)−2

 (18)

should span a space including the columns of

P−1Ψ =

 1 0
−1

1− β−1(1 + r̄)−2
1

 . (19)

But the square matrix in (19) is by construction non-singular, therefore spans the whole
of R2, so the condition for existence cannot be met.

This situation of β < (1+ r̄)−2 implies very strong discounting of the future, relative
to the rate of return on investment or the interest rate on loans. There is no optimal
policy, because the nature of good policies is to consume a large amount right away
by borrowing, then postpone repaying the loans a long time. For any consumption
path of this type, there is always another one that consumes even more immediately
and postpones the repayment even longer, and thereby improves on the original path.
Postponing repayment raises utility even though the accumulating interest requires a
greater future consumption sacrifice the longer payment is postponed. The discount
factor β is so small that the increased future costs of repayment are offset by the
increased discounting.

Problem 1 Redo the analysis above with the constraint (3) replaced by

H(t) = (1 + r(t− 1))H(t− 1)− C(t) + Y (t) , (20)

and the no-Ponzi condition applied to H instead of W . This model is actually exactly
the same as the one discussed above. W and H are just different ways of defining
wealth, with both implying the same consumption possibility set. However the al-
gebraic forms of the FOC’s, transversality conditions, and Jordan decomposition are
different.

2. Optimal Growth

The optimization problem is

max
{K(t),I(t),C(t),L(t)}

E

[
∞∑
t=0

βtU (C (t) , 1− L (t))

]
(21)

subject to

C(t) + I(t) = A(t)f(K(t− 1), L(t)) , (22)

K (t) = (1− δ)K (t− 1) + I(t) (23)

and

K(t) ≥ 0 . (24)
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Problem 2: Find the Euler equations and the transversality condition for this
problem.

Problem 3: Assume the marginal utility of leisure is zero, so that optimal L is
identically 1 and it drops out of the decision problem in the growth model. Suppose
U(C(t)) = log(C(t)), f(K(t − 1), 1) = K(t − 1)α, and δ = 1. Show that a constant
K(t)/C(t) satisfies the FOCs, including transversality, and that the convexity and
concavity conditions are also satisfied, so that the constant K/C solution is in fact an
optimum. Assume 0 < α < 1. Assume the exogenous stochastic process A is bounded
away from zero and infinity.


